Identification and characterization of roundabout orthologs in zebrafish
نویسندگان
چکیده
The Roundabout (Robo) family of receptors and their extracellular ligands, the Slit protein family, play important roles in repulsive axon guidance. First identified in Drosophila, Robo receptors form an evolutionarily conserved sub-family of the immunoglobulin (Ig) superfamily that are characterized by the presence of five Ig repeats and three fibronectin-type III repeats in the extracellular domain, a transmembrane domain, and a cytoplasmic domain with several conserved motifs that play important roles in Robo-mediated signaling (Cell 92 (1998) 205; Cell 101 (2000) 703). Robo family members have now been identified in C. elegans, Xenopus, rat, mouse, and human (Cell 92 (1998) 205; Cell 92 (1998) 217; Cell 96 (1999) 807; Dev. Biol. 207 (1999) 62). Furthermore, multiple robo genes have been described in Drosophila, rat, mouse and humans, raising the possibility of potential redundancy and diversity in robo gene function. As a first step in elucidating the role of Robo receptors during vertebrate development, we identified and characterized two Robo family members from zebrafish. We named these zebrafish genes robo1 and robo3, reflecting their amino acid sequence similarity to other vertebrate robo genes. Both genes are dynamically expressed in the developing nervous system in distinct patterns. robo3 is expressed during the first day of development in the hindbrain and spinal cord and is later expressed in the tectum and retina. robo1 nervous system expression appears later in development and is more restricted. Moreover, both genes are expressed in non-neuronal tissues consistent with additional roles for these genes during development.
منابع مشابه
Robo3 isoforms have distinct roles during zebrafish development
Roundabout (Robo) receptors and their secreted ligand Slits have been shown to function in a number of developmental events both inside and outside of the nervous system. We previously cloned zebrafish robo orthologs to gain a better understanding of Robo function in vertebrates. Further characterization of one of these orthologs, robo3, has unveiled the presence of two distinct isoforms, robo3...
متن کاملIdentification of the first Transgenic Aquatic Animal in Iran by PCR-Based Method and Protein Analysis
In the recent years, there is evidence of training a red type of zebrafish which differs from wild-type in body color. There is not any document how it reaches to the ornamental fish farms of Iran but at first, it was a doubt it belongs to a morphotype or genetic modification (GM). First of all, a set primer was designed to validate zebrafish species. Mitochondrial 16srDNA was selected and ampl...
متن کاملCharacterization of the Zebrafish Homolog of Zipper Interacting Protein Kinase
Zipper-interacting protein kinase (ZIPK) is a conserved vertebrate-specific regulator of actomyosin contractility in smooth muscle and non-muscle cells. Murine ZIPK has undergone an unusual divergence in sequence and regulation compared to other ZIPK orthologs. In humans, subcellular localization is controlled by phosphorylation of threonines 299 and 300. In contrast, ZIPK subcellular localizat...
متن کاملIdentification and characterization of a novel member of the ATP-sensitive K+ channel subunit family, Kir6.3, in zebrafish.
ATP-sensitive K+ (KATP) channels play a crucial role in coupling cellular metabolism to membrane potential. In addition to the orthologs corresponding to Kir6.1 and Kir6.2 of mammals, we have identified a novel member, designated Kir6.3 (zKir6.3), of the inward rectifier K+ channel subfamily Kir6.x in zebrafish. zKir6.3 is a protein of 432 amino acids that shares 66% identity with mammalian Kir...
متن کاملFunctional characterization of zebrafish orthologs of the human Beta 3-Glucosyltransferase B3GLCT gene mutated in Peters Plus Syndrome
Peters Plus Syndrome (PPS) is a rare autosomal recessive disease characterized by ocular defects, short stature, brachydactyly, characteristic facial features, developmental delay and other highly variable systemic defects. Classic PPS is caused by loss-of-function mutations in the B3GLCT gene encoding for a β3-glucosyltransferase that catalyzes the attachment of glucose via a β1-3 glycosidic l...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Mechanisms of Development
دوره 101 شماره
صفحات -
تاریخ انتشار 2001